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Importance Sampling

Set-up:

Unknown target distribution π - can only evaluate its unnormalised
density Π(x) pointwise

Known proposal distribution q

Known bounded function ϕ : X → R
Supp(ϕ) ⊆ Supp(π) ⊆ Supp(q)

We want to estimate (ϕ, π) =
∫
X ϕ(x)π(x)dx . Let Z =

∫
Rd Π(x)dx .

Then:

(ϕ, π) =

∫
X
ϕ(x)π(x)dx =

∫
X ϕ(x)Π(x)dx∫

Rd Π(x)dx
=

∫
X ϕ(x)

Π(x)
q(x) q(x)dx∫

Rd
Π(x)
q(x) q(x)dx
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Importance Sampling

Define W (x) := Π(x)
q(x) . Using this:

(ϕ, π) =

∫
X ϕ(x)W (x)q(x)dx∫

Rd W (x)q(x)dx

≈
N∑
i=1

ϕ(xi )

w(xi )︷ ︸︸ ︷
W (xi )∑N
j=1W (xj)

=
N∑
i=1

ϕ(xi )w(xi )

Setting π̃N(dx) =
∑N

i=1 w(xi )δxi (dx) gives (ϕ, π) ≈ (ϕ, π̃N)

Definition

We call π̃N the approximation/empirical measure and N the number of
points/atoms used to construct it. (ϕ, π̃N) is the Self-Normalised
Importance Sampling (SNIS) estimator.
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Importance Sampling

Theorem 2.6. (Akyildiz and Ḿıguez 2021)

If (W 2, q) <∞ then:

E[|(ϕ, π)− (ϕ, π̃N)|2] ≤ 4∥ϕ∥2∞ρ
N

Where ρ := Eq

[
π2(X )
q2(X )

]
. The same bound holds for πN .

Remark

ρ = Dχ(π∥q) + 1. We call ρ the Second Moment Error Metric (SMEM).
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If (W 2, q) <∞ then:

E[|(ϕ, π)− (ϕ, π̃N)|2] ≤ 4∥ϕ∥2∞ρ
N

Where ρ := Eq

[
π2(X )
q2(X )

]
. The same bound holds for πN .

Remark

ρ = Dχ(π∥q) + 1. We call ρ the Second Moment Error Metric (SMEM).

Carlos A.C.C. Perello (Imperial) Unbounded OAIS Rates July 18, 2023 6 / 36



Optimised Adaptive Importance Sampling

Suppose the proposal is q = qθ. Then:

ρ = ρ(θ), ρ(θ) = Eqθ

[
π2(X )

q2θ(X )

]
ρ(θ) is convex for qθ in the exponential family (Akyildiz and Mı́guez
2021). For such qθ, we can optimise θ and minimise ρ(θ). An algorithm
that minimises ρ(θ) to adapt the proposal is an OAIS algorithm.

Remark

Oftentimes one may not be able to evaluate ρ(θ) either, but only an
unnormalised version. We denote this version as R(θ).
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Optimised Adaptive Importance Sampling

Algorithm 1 General OAIS algorithm

1: Choose a proposal qθ with initial parameter θ0 and a number of parti-
cles N.

2: for t ≥ 0 do
3: Sample (x

(i)
t )Ni=1 ∼ qθt

4: Construct π̃Nt (dx) =
∑N

i=1 w(x
(i)
t )δ

x
(i)
t
(dx)

5: Report (ϕ, π̃Nt ) and qθt
6: Compute the updated parameter θt+1

1

7: end for

How does one update the parameters? Minimising ρ(θ) using a gradient
estimator g(θ)⇝ Optimisation

1Ideally using (x
(i)
t )Ni=1
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Optimise Adaptive Importance Sampling

Assumption 3.1.

ρ(θ) is convex and L-smooth w.r.t. the norm ∥ · ∥Θ, the parameter space’s
2-norm.

Assumption 3.2.

The gradient of ρ(θ) is bounded: ∃M > 0 s.t. ∀θ ∈ Θ, ∥∇ρ(θ)∥2 ≤ M.
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Optimised Adaptive Importance Sampling

Given Assumptions 3.1 and 3.2, (Akyildiz and Mı́guez 2021) prove that,
after T iterations:

E[|(ϕ, π)− (ϕ, π̃NT )|2] ≤
C1√
TN

+
C2√
TN2

+
C3√
TN

(2 + logT ) +
C4

N

However, they also assume that the parameter space Θ is compact.

Furthermore, no numerical simulations are provided, and therefore the
algorithm remained empirically unverified.

Definition

If an OAIS algorithm has rate O(f (T )/N + 1/N) where f (T )→ 0 as
T →∞, we call O(f (T )) its adaptive rate.

Goal: Obtain OAIS (adaptive) convergence rates without constraining Θ.
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SG & USG OAIS

Given that Assumptions 3.1 & 3.2 hold on ρ(θ) in addition to mild
assumptions on g , then using tk = C√

k+1
after T iterations of SG OAIS:

Theorem 3.2.

E[|(ϕ, π)− (ϕ, π̃NT )|2] ≤
K1E[∥θ0 − θ∗∥2Θ]

N
√
T + 1

+
K2 log(T + 1)

N
√
T + 1

+
4∥ϕ∥2∞ρ(θ∗)

N

If USG is run instead with R(θ) and gradient estimator G satisfying
Assumption 2.2 with S2 instead of σ2, we have the bound:

E[|(ϕ, π)−(ϕ, π̃NT )|2] ≤
K1E[∥θ0 − θ∗∥2Θ]

N
√
T + 1

+
K ′
2 log(T + 1)

Z 2N
√
T + 1

+
4∥ϕ∥2∞R(θ∗)

Z 2N

Where K1 = K1(ϕ, C ), K2 = K2(ϕ, C , σ) and K ′
2 = K ′

2(ϕ, C , S).
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SG & USG OAIS

Theorem 3.2 is novel in the IS/OAIS setting.

The result was proven using a last-iterate SGD result which does not put
any restrictions on the domain of f (Orabona 2020).
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Adam OAIS

We will see later that SG OAIS is numerically unstable, so we adapted our
results to adaptive optimisers.

A few assumptions are needed to give
meaningful results about their convergence (Défossez et al. 2020).

Assumption 3.4.

Assume that the ℓ∞ norm of the gradient estimators of ρ and R, g and G
respectively, are almost surely-bounded; that is ∃R1, R2 ≥

√
ε, such that

∀x ∈ Rd :

∥g(x)∥∞ ≤ R1 −
√
ε a.s.,

∥G (x)∥∞ ≤ R2 −
√
ε a.s.

Assumption 3.5.

Assume ρ(θ) is µ-strongly convex and L-smooth w.r.t. the ∥ · ∥Θ norm.
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Assumption 3.4.

Assume that the ℓ∞ norm of the gradient estimators of ρ and R, g and G
respectively, are almost surely-bounded; that is ∃R1, R2 ≥

√
ε, such that

∀x ∈ Rd :

∥g(x)∥∞ ≤ R1 −
√
ε a.s.,

∥G (x)∥∞ ≤ R2 −
√
ε a.s.

Assumption 3.5.

Assume ρ(θ) is µ-strongly convex and L-smooth w.r.t. the ∥ · ∥Θ norm.

Carlos A.C.C. Perello (Imperial) Unbounded OAIS Rates July 18, 2023 14 / 36



Adam OAIS

We will see later that SG OAIS is numerically unstable, so we adapted our
results to adaptive optimisers. A few assumptions are needed to give
meaningful results about their convergence (Défossez et al. 2020).
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respectively, are almost surely-bounded; that is ∃R1, R2 ≥

√
ε, such that

∀x ∈ Rd :

∥g(x)∥∞ ≤ R1 −
√
ε a.s.,

∥G (x)∥∞ ≤ R2 −
√
ε a.s.

Assumption 3.5.

Assume ρ(θ) is µ-strongly convex and L-smooth w.r.t. the ∥ · ∥Θ norm.
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Adam OAIS

If Assumption 3.4 holds on g and Assumption 3.5 holds on ρ(θ), using a
constant learning rate tk = α with parameters β2 ∈ (0, 1) and
β1 ∈ (0, β2) yields, for T ≥ β1

1−β1
:

Theorem 3.4.

min
k∈[T ]0

E
[
|(ϕ, π)− (ϕ, π̃Nk )|2

]
≤ 4R1∥ϕ∥2∞

Nαµ

ρ(θ0)− ρ(θ∗)
T̃ + 1

+
4E ′∥ϕ∥2∞
N(T̃ + 1)

[
log

(
1 +

R2
1

(1− β2)ε

)
− (T + 1) log(β2)

]
+
4∥ϕ∥2∞ρ(θ∗)

N

Where E ′ = E ′(R1, L, d , α, β1, β2, µ) and T̃ ∝ T linearly.

Remark

The bound is on the minimum MSE after T iterations
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AdaGrad OAIS

If Assumption 3.4 holds on g and Assumption 3.5 holds on ρ(θ), then
after T iterations with learning rate tk = α and β1 ∈ (0, 1):

Theorem 3.6.

min
k∈[T ]0

E
[
|(ϕ, π)− (ϕ, π̃Nk )|2

]
≤ 4R1∥ϕ∥2∞[ρ(θ0)− ρ(θ∗)]

µαN
√
T + 1

+
(8dR2

1 + 2αdR1L)∥ϕ∥2∞
µN
√
T + 1

log

(
1 +

(T + 1)R2
1

ε

)
+
4∥ϕ∥2∞ρ(θ∗)

N

Carlos A.C.C. Perello (Imperial) Unbounded OAIS Rates July 18, 2023 16 / 36



AdaGrad OAIS

If Assumption 3.4 holds on g and Assumption 3.5 holds on ρ(θ), then
after T iterations with learning rate tk = α and β1 ∈ (0, 1):

Theorem 3.6.

min
k∈[T ]0

E
[
|(ϕ, π)− (ϕ, π̃Nk )|2

]
≤ 4R1∥ϕ∥2∞[ρ(θ0)− ρ(θ∗)]

µαN
√
T + 1

+
(8dR2

1 + 2αdR1L)∥ϕ∥2∞
µN
√
T + 1

log

(
1 +

(T + 1)R2
1

ε

)
+
4∥ϕ∥2∞ρ(θ∗)

N

Carlos A.C.C. Perello (Imperial) Unbounded OAIS Rates July 18, 2023 16 / 36



AdaGrad OAIS

If Assumption 3.4 holds on g and Assumption 3.5 holds on ρ(θ), then
after T iterations with learning rate tk = α and β1 ∈ (0, 1):

Theorem 3.6.

min
k∈[T ]0

E
[
|(ϕ, π)− (ϕ, π̃Nk )|2

]
≤ 4R1∥ϕ∥2∞[ρ(θ0)− ρ(θ∗)]

µαN
√
T + 1

+
(8dR2

1 + 2αdR1L)∥ϕ∥2∞
µN
√
T + 1

log

(
1 +

(T + 1)R2
1

ε

)
+
4∥ϕ∥2∞ρ(θ∗)

N

Carlos A.C.C. Perello (Imperial) Unbounded OAIS Rates July 18, 2023 16 / 36



AdaGrad OAIS

Theorems 3.4 & 3.6 also are novel in the IS/OAIS setting.

These were shown using convergence results for adaptive optimisers shown
in (Défossez et al. 2020).
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Preliminaries

Three main settings were considered:

Case 1: π (Bivariate) Gaussian, q Gaussian – (Gaussian target)

Case 2: π Mixture Gaussian, q Gaussian – (Mixture target)

Case 3: π Logit Normal, q Beta – (Logit Normal target)

In all cases, N = 1000 atoms were used at each iteration to construct the
empirical measure. 10 runs were performed in the first two cases, whilst
100 runs were performed in the last setting.

Only two variables: number of iterations T and learning rate tk (α if
fixed).

We will estimate P(X ∈ D) where X ∼ π and D will be specified.
Equivalent to computing (1D , π).
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Update rule

Let qθk ∼ N (µk , Σk). Defining mk = Σ−1
k µk and Sk = Σ−1

k :

mk+1 ← mk +
tk
N

N∑
i=1

π2(xi )

q2θk (xi )
(xi − S−1

k mk)

Sk+1 ← ProjPD2

[
Sk −

tk
2N

N∑
i=1

π2(xi )

q2θk (xi )
(xix

⊤
i − S−1

k mkm
⊤
k S

−1
k − S−1

k )

]
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SG OAIS (Gaussian Target)

T = 10000, tk = 10−4
√
k+1
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SG OAIS (Gaussian Target)

T = 40000, tk = 10−5
√
k+1
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Adam OAIS (Gaussian Target)

T = 10000, tk = α = 0.01
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Adam OAIS (Gaussian Target)

T = 10000, tk = α = 0.01
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AdaGrad OAIS (Gaussian Target)

T = 30000, tk = α = 0.1
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SG OAIS (Mixture Target)

T = 10000, tk = 10−4
√
k+1
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SG OAIS (Mixture Target)

T = 40000, tk = 10−5
√
k+1
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SG OAIS (Mixture Target)

T = 40000, tk = 10−5
√
k+1
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Adam OAIS (Mixture Target)

T = 10000, tk = α = 0.01
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Adam OAIS (Mixture Target)

T = 10000, tk = α = 0.01
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Adam OAIS (Mixture Target)

T = 10000, tk = α = 0.01
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AdaGrad OAIS (Mixture Target)

T = 30000, tk = α = 0.1
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Logit Normal

If X ∼ N (µ, σ), exp(X )
1+exp(X ) := Y ∼ LogitNormal(µ, σ).

Highly intractable:

E [Y ] = 0.5 if µ = 0, all other moments and cases unknown (Holmes and
Schofield 2022).

What proposal qθ to use? Supp(Y ) = (0, 1) ⇝ Beta proposal

αk+1 ←

∣∣∣∣∣αk +
tk
N

N∑
i=1

π2(xi )

q2θk (xi )

[
ψ0(αk + βk)− ψ0(αk) + log(xi )

]∣∣∣∣∣
βk+1 ←

∣∣∣∣∣βk + tk
N

N∑
i=1

π2(xi )

q2θk (xi )

[
ψ0(αk + βk)− ψ0(βk) + log(1− xi )

]∣∣∣∣∣
Where xi i.i.d. and xi ∼ qθk and ψ0(x) is the Digamma function.
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SG OAIS (Logit Normal Target)
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SG OAIS (Logit Normal Target)

T = 50000, tk = 10√
k+1
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SG OAIS (Logit Normal Target)

T = 50000, tk = 10√
k+1
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Adam OAIS (Logit Normal Target)

T = 10000, tk = α = 0.1
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Adam OAIS (Logit Normal Target)

T = 10000, tk = α = 0.1
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Adam OAIS (Logit Normal Target)

T = 10000, tk = α = 0.1
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AdaGrad OAIS (Logit Normal Target)

T = 10000, tk = α = 0.01
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Summary

Method Assumptions Convexity Type of Bound Adaptive Rate Reference

SG OAIS 2.1, 2.2, 3.1, 3.2 Regular Last iterate O
(

log T√
T

)
Theorem 3.2

USG OAIS 2.1, 2.2, 3.1, 3.2 Regular Last iterate O
(

log T√
T

)
Theorem 3.2

Adam OAIS 3.4, 3.5 Strong Min-iterate — Theorem 3.4

AdaGrad OAIS 3.4, 3.5 Strong Min-iterate O
(

log T√
T

)
Theorem 3.6

Table 1: The OAIS algorithms and their convergence rates in unbounded
parameter domains.
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Akyildiz, Ö. D. and J. Mı́guez (2021). “Convergence rates for
optimised adaptive importance samplers”. In: Statistics and Computing
31.2. issn: 15731375. doi: 10.1007/s11222-020-09983-1.
Orabona, F. (Aug. 2020). Last Iterate of SGD Converges (Even in
Unbounded Domains). url:
https://parameterfree.com/2020/08/07/last-iterate-of-

sgd-converges-even-in-unbounded-domains/.
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