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Chapter 1

Introduction

This dissertation aims to introduce the reader to the so-called optimal matching problem

and give an expository and transparently presented proof of [1, Theorem 1.1].

First, the (Poisson) optimal matching problem will be introduced in bounded and

unbounded domains, alongside its connection to optimal transportation theory. Subse-

quently, we will discuss the linearisation of the Monge-Ampère equation near the uniform

measure, which gives rise to the so-called harmonic estimate of the optimal matching be-

tween points, which states that under certain conditions, the displacement of the optimal

matching can be well-approximated by the gradient of a harmonic function. Following

that, the derivation of the upper bound utilised in [1, Theorem 1.1] will be presented, split

into smaller components to enhance the clarity of the arguments employed. Afterwards,

we will mention [2], where the optimal matching cost is no longer quadratic. We note that

arguments presented in this dissertation may be employed for the non-quadratic matching

case, at the expense of losing much of the proof’s geometric interpretation. Finally, some

avenues of further work are stated, alongside a small discussion about possible extensions

of this result using multi-marginal optimal transport.

1.1 The optimal matching problem

We first introduce the (Poisson) optimal matching problem (sometimes called the bipartite

matching problem or the optimal assignment problem). In a bounded domain, the problem

goes as follows: consider a Borel-measurable and bounded subset1 B ⊂ Rd, and let X =

(Xi)
n
i=1 and Y = (Yi)

n
i=1 be i.i.d on B. Furthermore, let µ =

∑N
i=1 δXi

and ν =
∑N

i=1 δYi
be

the counting measures of X and Y , respectively. We define T to be the set of all possible

matchings, i.e. T := {T : Rd → Rd s.t. T#µ = ν}2. We now introduce the γ-cost of a

matching:

1In fact, this problem can also be formulated for B a compact manifold, but we take B ⊂ Rd for
simplicity.

2Recall that T pushes forward µ into ν if T#µ = ν iff X ∼ µ =⇒ T ◦(X) ∼ ν.
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Chapter 1. Introduction 1.1. The optimal matching problem

Figure 1.1: Quadratic optimal matching on the bi-dimensional unit square with 20 points.

Definition 1.1 (γ-cost of a matching). For a matching T ∈ T , the γ-cost Cγ(T ) of the

matching T is defined as:

Cγ(T ) :=
N∑
i=1

|T (Xi)−Xi|γ

Furthermore, a matching T ∗ solves the (bounded) γ-optimal matching problem if it satis-

fies:

T ∗
γ = inf

T∈T
Cγ(T ) (1.1)

which is finite as we are considering a finite number of samples in a bounded domain.

When γ is not specified, we take γ = 2 so that C(T ) = C2(T ).

It is known that different values of γ change the geometric structure of T ∗
γ ; we will not

be focusing on the geometric properties of T ∗
γ , but we refer the reader to [3] for a discussion

on how changing γ alters the behaviour of T ∗
γ . Figure 1.1 displays the quadratic optimal

matching T ∗
2 = T ∗ on [0, 1]2. We are now interested in the case where the points in X and

Y are i.i.d. distributed on Rd. To arrive at a canonical matching, we restrict our set of

possible matchings T to matchings that “look the same everywhere”, which we now define

precisely. LetX and Y be independent and homogeneous Poisson Point Processes (PPPs)3

on Rd. Unless otherwise specified, all the PPPs we consider throughout this dissertation

will have unit intensity. Fix a ∈ Zd and let us define the triple S := [(Xi) , (Yi) , T (·)].
Consider the action ⊕a which translates the aforementioned triple by a:

⊕a(S) := [(Xi + a) , (Yi + a) , T (· − a) + a]

3For a primer on spatial Poisson point processes, we refer the reader to [4].
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Chapter 1. Introduction 1.1. The optimal matching problem

Here and throughout, let the probability measure P be the probability measure induced by

the PPPs’ counting measures µ and ν, as well as the distribution on the set of matchings

T , and E be the probability measure’s associated expectation. To arrive at a “canonical”

matching, we would like this action to be stationary and ergodic:

Definition 1.2 (Stationarity & ergodicity). Given the triple S and a ∈ Zd, the translation

action ⊕a defined above is

1. ⊕a is stationary if for all events E generated by the σ-algebra σ(S) and the corre-

sponding shifted event ⊕a(E), then P(E) = P(⊕a · E).4

2. ⊕a is ergodic if for all A ∈ σ(S) such that ⊕a · A = A, P(A) = 0 or 1.

Additionally, if ⊕a is stationary or ergodic for all a ∈ Zd, then we call T , the matching in

the triple S, stationary or ergodic, respectively.

Observe that the PPPs X and Y we are considering are homogeneous, imposing that

the action ⊕a is stationary and ergodic only affects the set of matchings T . In simpler

terms, the matching T is stationary if it looks the same regardless of what portion of Rd

we consider it in, whilst T is ergodic if all of the translation-invariant events concerning

T have trivial probabilities. We denote the set of all stationary and ergodic matchings in

T by T ◦.

With this in mind, we would like to discern amongst all possible matchings in T ◦

a quadratic optimal matching that, in a sense, minimises C(T ). However, one cannot

simply define T ∗ as in (1.1), as C(T ∗) is a.s. infinite in this case. This can be readily

observed by considering Rd as a union of translated hypercubes and considering the cost

of the matching T ∗ restricted to such a hypercube. As the matching T ∗ is both stationary

and ergodic, the sum of the cost over N hypercubes grows at least as fast as N , and

therefore, by letting N → ∞, it follows that there are a.s. no stationary and ergodic maps

with finite cost. The next best thing one can hope for is local optimality :

Definition 1.3 (Local optimality). A matching T between two PPPs X and Y on Rd

is locally optimal if, for any other matching T̃ such that T (X) ̸= T̃ (X) on finitely many

points, we have:

C(T ◦)− C(T̃ ) ≤ 0

Notice that due to the infinite number of cancellations, the quantity on the left-hand side

above is finite.

We now aim to answer the question:

Given two homogeneous PPPs X and Y in R2, does there exist a stationary, ergodic and

locally optimal matching T ◦?

4This is equivalent to saying that the push-forward of the map induced by the group action is trivial.
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Chapter 1. Introduction 1.1. The optimal matching problem

This question, despite seeming highly combinatorial is, in fact, deeply related to opti-

mal transport. To see this, we introduce the so-called Monge problem:

Definition 1.4 (Monge problem). Given two measures µ and ν supported on X and Y
respectively, a map T ∗ is said to solve the Monge problem with cost function c(x, y) if it

satisfies:

T ∗ = inf
T∈T

∫
X
c(x, T (x))dµ (1.2)

where we recall that T = {T : X → Y | T#µ = ν}.

Indeed, if we consider B = Rd and µ and ν to be the counting measures of X and Y

and if we do not require T to be stationary and ergodic, then this problem can be thought

of as finding a solution to the Monge problem between µ and ν with quadratic cost. This

relationship is also hinted at by the fact that local optimality is, in fact, equivalent to

cyclical monotonicity [5, 6]:

Definition 1.5 (Cyclical monotonicity). A matching T ∈ T is cyclically monotone if for

any finite collection of points {Xi}Ni=1 ⊂ X in its support, we have:

N∑
i=1

T (Xi)
⊤(Xi −Xi−1) ≥ 0, where X0 := XN

Cyclical monotonicity is a fundamental notion in optimal transportation theory, es-

pecially when considering optimal transport problems with quadratic cost, as all optimal

transport plans have cyclically monotone support [5, Section 2.3]. However, cyclical mono-

tonicity is much less intuitive than local optimality and therefore, in practice, it is easier

to work with local optimality. Finally, the total cost of a matching Cγ(T ) is related to

the γ-Wasserstein distance:

Definition 1.6 (γ-Wasserstein distance). Let p and q be two probability measures on

X and Y and γ > 1. Furthermore, let X and Y have finite γ moments. Then, their

γ-Wasserstein distance is defined by:

Wγ(p, q) =

(
inf

π∈Π(p, q)

∫
X×Y

|x− y|γdπ(x, y)
)1/γ

Where Π(p, q) is the set of all couplings between p and q, i.e. π ∈ Π(p, q) satisfies

π(X ×B) = q(B) and π(A× Y) = p(A).

Indeed, notice that if we take p and q to be counting measures of the PPPs X and Y

restricted to some finite Borel set B ⊂ Rd and if Y = T ∗(X), then W γ
γ (p, q) = Cγ|B (T ∗),

the γ-cost of T restricted to the set B. The γ-Wasserstein distance is a metric on the space

of measures with finite γ-moments, which conveniently defines a notion of “closeness” of

measures. To see the relationship between the Monge problem and the γ-Wasserstein

distance, if T ∗ solves the Monge problem for c(x, y) = |x − y|γ, then by definition of

the Monge problem, coupling π∗ := (Id, T ∗)#(µ, ν). With this, we are ready to briefly

introduce the Monge-Ampère equation and its connections to optimal transportation.
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Chapter 1. Introduction 1.2. The Monge-Ampère equation

1.2 The Monge-Ampère equation

The Monge-Ampère equation is perhaps one of the most studied fully nonlinear PDEs of

the last century. This may be partly due to the vast links this equation has to geometric

analysis, as the Monge-Ampère equation can be used to derive meaningful results about

the classification of affine spheres [7], the existence of surfaces with prescribed Gaussian

curvature5 [8], the existence of local isometric embeddings of a 2-manifold into R3 [9] and,

of course, optimal transport [5, 6].

In essence, the Monge-Ampère prescribes the determinant of the Hessian of its solution:

det(D2u(x)) = f(x, u, ∇u) (1.3)

The equation above is equivalent to prescribing the product of the eigenvalues of the

Hessian of u, hinting its connection to the Poisson equation, which prescribes the sum

of the eigenvalues of the Hessian. In fact, both equations are intrinsically linked, and

it is precisely this connection that yields the harmonic estimate derived in [10] via the

linearisation of (1.3).

We now give a heuristic demonstration of how the Monge-Ampère arises from the

optimal transport problem and discuss the linearisation mentioned above, mimicking the

arguments in [5, Section 4.1] and [11]. Suppose we are given two probability measures µ

and ν on A ⊂ Rd (for simplicity, let A = [0, 1]d) with densities µ(x) and ν(x), respectively,

and consider a measure-preserving map T such that

µ(x) = ν(T (x)) det JT (x) (1.4)

where JT (X) is the Jacobian of the map T . Now, suppose T (X) = T ∗(X) is the solution

of the quadratic Monge problem (1.2) for µ and ν. It is widely known that (subject to

some regularity conditions on µ and ν) such a solution of the Monge problem is of the

form T ∗(X) = ∇φ(x) where φ(x) is a convex function6 [5, Theorem 2.12]. Then, we can

plug this into (1.4) to obtain:

µ(x) = ν(∇φ(x)) det
(
∇2φ(x)

)
(1.5)

This is the Monge-Ampère equation (1.3) with f(x, u, Du) = µ(x)
ν(∇φ(x))

.

Now, suppose that both the source and target densities are “close” to each other in

the sense that

ν(x) = νε(x) = (1 + εh(x) +O(ε2))µ(x) (1.6)

Where, for simplicity, h(x) ∈ C∞(A) and µ(x) ∈ C1. In this situation, we expect the

transport map T ∗(X) to be close to the identity map, and as T ∗(X) = ∇φ(x), then we

5This is also known as the Minkowski problem.
6This result is also known as Brenier’s theorem.
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Chapter 1. Introduction 1.2. The Monge-Ampère equation

can justify making the ansatz

φ(x) = φε(x) =
|x|2

2
+ εψ(x) +O(ε2) (1.7)

where we assume ψ(x) ∈ C∞(A). Plugging this ansatz into (1.5) and discarding second-

order terms gives:

µ(x) = (1 + εh(x+ ε∇ψ(x)))µ(x+ ε∇ψ(x)) det(I + ε∇2ψ(x))

Taking a first-order Taylor expansion in x for h and µ and once again discarding any

second-order terms yields:

µ(x) = (1 + εh(x)(µ(x) + ε∇µ(x)∇ψ(x)) det(I + ε∇2ψ(x))

Expanding the first two terms and keeping first-order terms results in:

µ(x) = (µ(x) + ε∇µ(x)∇ψ(x) + εµ(x)h(x)) det(I + ε∇2ψ(x))

Finally, we add and subtract det(I) to det(I + ε∇2ψ(x))

µ(x) = (µ(x) + ε∇µ(x)∇ψ(x) + εµ(x)h(x))(det(I + ε∇2ψ(x))− det(I))

+ µ(x) + ε∇µ(x)∇ψ(x) + εµ(x)h(x)

Observe that we may cancel a µ(x) term. Recalling Jacobi’s formula, specifically that

the derivative of the determinant function at I is the trace, i.e. (det)′I(M) = tr(M) [12,

Section 8.3], we now divide both sides by ε and take the limit as ε ↓ 0 to obtain:

0 = µ(x)det′I(∇2(ψ(x))) +∇µ(x)∇ψ(x) + µ(x)h(x)

Notice that tr(∇2(ψ(x))) = ∆ψ; dividing the equation above by µ(x), re-expressing the

gradients and rearranging yields:

−∆ψ(x)−∇(log(µ(x)))∇ψ(x) = h(x)

We impose one further assumption: suppose that not only are our densities close to each

other, but they are also close to the Lebesgue measure; that is

µ(x) = 1 + δµ′(x) (1.8)

where δ ≪ supA |µ(x)|. Then, taking a first-order Taylor expansion, ∇(log(µ(x))) ≈
δµ′(x) ≪ 1, and therefore the Monge-Ampère equation (1.5), when linearised near the

Lebesgue measure, becomes the Poisson equation:

−∆ψ(x) = h(x)

6



Chapter 1. Introduction 1.3. Proof outline

This heuristic derivation illustrates how the Monge-Ampère equation “becomes” the Pois-

son equation when both the source and target densities are close to the Lebesgue mea-

sure. However, there are multiple problems with the arguments presented above, the most

prominent being that this only holds for probability measures that have a density7. Cru-

cially, in the Poisson optimal matching problem, we consider counting measures, which

do not have a density. Furthermore, we would like to make the notion of “closeness”

more rigorous and obtain quantitative estimates on the quality of this linearisation, e.g.

a result that states that given that the two measures µ and ν are quantitatively close in

some sense, then the displacement y− x between points distributed according to µ and ν

is quantifiably close (again, in a notion that will be made precise) to a bounded harmonic

gradient field ∇Φ(x), analogous to how T ∗(x) − x = ∇ [φ(x)− x2/2] for a quadratically

optimal transport map T ∗. The quantitative control we desire is exactly [10, Theorem

1.4], which will be essential in proving the non-existence of T ◦.

1.3 Proof outline

So far, we have touched upon several introductory notions in the theory of Poisson ran-

dom matchings, optimal transport and its connection to the Monge-Ampère and Poisson

equations. We recall that the main goal of this dissertation is to answer the following

question in the negative:

Given two homogeneous PPPs X and Y in R2, does there exist a stationary, ergodic and

locally optimal matching T ◦?

We will employ the same arguments as in [1], possibly presenting them differently so they

are easier to understand. The proof of the non-existence of T ◦ is based on a classical local

1-energy lower bound for bipartite matchings; if X and Y are two PPPs in Rd and T ∈ T
is a matching between then, then we have8:

1

Rd

∑
X or T (X)∈BR

|T (X)−X| ≥ Ω(
√
logR) (1.9)

where BR is the ball of radius R. Of particular interest to us is the case when d = 2. We

will not address this lower bound in great detail, but it will be briefly discussed after the

proof, as this lower bound is essentially the same one derived in [13] around 50 years ago.

On the other hand, by using arguments that fundamentally rely on stationarity and

ergodicity, as well as the harmonic approximation developed in [10], it is shown in [1]

that:
1

R2

∑
X or T ◦(X)∈BR

|T ◦(X)−X| ≤ o(
√

logR) (1.10)

7Unless specified otherwise, all densities considered are with respect to the Lebesgue measure.
8Note that we do not require the stationarity and ergodicity assumptions for the lower bound to hold.
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Chapter 1. Introduction 1.3. Proof outline

which is incompatible with the lower bound (1.9). We briefly illustrate the quantities we

must control to arrive at said upper bound. First, fix L≫ 1, which should be treated as

a constant we can make arbitrarily large. Then, we divide the sum in the left-hand side

of (1.10) into “long” (larger than L) and “short” (smaller than L) edges in the matching:

1

R2

∑
X or T ◦(X)∈BR

|T ◦(X)−X| = 1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|≤L

|T ◦(X)−X|

+
1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|>L

|T ◦(X)−X|

Now apply the obvious bound to the first sum and Cauchy-Schwarz to the second sum to

recover a quadratic cost term:

1

R2

∑
X or T ◦(X)∈BR

|T ◦(X)−X| ≤

L

R2
|{X : X or T ◦(X) ∈ BR and |T ◦(X)−X| ≤ L}|

+

[
1

R2
|{X : X or T ◦(X) ∈ BR and |T ◦(X)−X| > L}|

]1/2

×

 1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|≥L

|T ◦(X)−X|2


1/2

(1.11)

By inspecting the above equation, we can obtain an upper bound of the form (1.10) if we

successfully control the following three quantities in terms of L and, crucially, R:

1. The number of short edges, corresponding to the term

A1 := |{X : X or T ◦(X) ∈ BR and |T ◦(X)−X| ≤ L}|

2. The number of long edges, corresponding to the term

A2 := |{X : X or T ◦(X) ∈ BR and |T ◦(X)−X| > L}|

3. The local energy of the long edges, corresponding to the term

A3 :=
1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|>L

|T ◦(X)−X|2

Using these definitions, (1.11) becomes

1

R2

∑
X or T ◦(X)∈BR

|T ◦(X)−X| ≤ L

R2
A1 +

√
A2

R2
×
√
A3 (1.12)

8
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which implies that, by successfully bounding A1, A2 and A3 in terms of R, we arrive at

(1.10) by a particular choice of L. In the sequel, we will observe that both A1 and A2 can

be controlled using geometric arguments, but A3 requires the harmonic estimate to ap-

proximate the displacement |T ◦(X)−X| by the gradient of a harmonic function, ∇Φ(X),

which is bounded. Additionally, we note that A2 heavily relies on the stationarity and

ergodicity assumptions made on T ◦, and that our control of A3 requires both the bounds

on A1 and A2 to hold.

This dissertation is structured as follows: Chapter 2 is devoted to bounding the term

A1 by controlling the local distance of scale R between the PPP counting measures µ

and ν. More specifically, we show that, in R2, this quantity grows slower than logR, a

phenomenon that does not occur in higher dimensions. The criticality of dimension d = 2

which is why this result has only been proven, to date, for PPPs in R2. To show this,

tools from harmonic analysis and martingale inequalities will be used, as well as multiple

geometric arguments.

Chapter 3 addresses the bound on A2, achieved using Birkhoff’s ergodic theorem [14,

Theorem 10.6]. This theorem, together with the stationarity and ergodicity assumptions

on T ◦, yields the desired control on A2.

Chapter 4 introduces the harmonic approximation result developed in [10] and shows

how to apply it to this problem to find a bound for A3. By analysing this problem at the

mesoscopic scale, we also show that the harmonic approximation theorem holds in our

context. To achieve this, we attain control of the local energy at scale R of the matching

T ◦.

Chapter 5 combines all the bounds derived alongside a particular choice of L to show

that the bound (1.10) indeed holds. The Ω(
√
logR) lower bound (1.9) is also touched

upon, and the generalisation of the non-existence of a stationary, ergodic and locally

optimal matching for costs γ ∈ [1, ∞] introduced in [2] is briefly touched upon. Finally,

some open problems in the Poisson matching area are introduced and discussed, as well as

multi-marginal optimal transport, which may be the subsequent key development needed

to extend this result to matchings of more than 2 PPPs.
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Chapter 2

Local distances

2.1 Growth rate

We first bound the number of close edges, A1, whose definition we recall below:

A1 := |{X : X or T ◦(X) ∈ BR and |T ◦(X)−X| ≤ L}|

In fact, we will bound A1 by proving the following lemma:

Lemma 2.1. For any matching T ∈ T , ∃C > 0 and an a.s. finite random radius r∗ such

that ∀R ≥ r∗:

|{X : X ∈ BR} ∪ {T (X) : T (X) ∈ BR}| ≤ CR2 (2.1)

Observe that the above Lemma applies for all T ∈ T , so we do not require the

stationarity and ergodicity assumption on T . Also, note that the quantity on the left-

hand side of Lemma 2.1 is larger than A1, which implies:

Corollary 2.2. ∃C > 0 and an a.s. finite random radius r∗ such that ∀R ≥ r∗:

A1 ≤ CR2

Lemma 2.1 can also be used to control A2, but doing so would not yield the desired

upper bound (1.10). We can afford to use such a crude estimate for A1 as in (1.12), A1 is

multiplied by L, a large constant we can choose; the fact that we can pick L allows us to

circumvent the crudeness of the bound by carefully choosing L.

In the sequel, it will be helpful to introduce the µ-density number of scale R, nR,µ;

this quantity is useful as if nR,µ ≈ 1, then the point process corresponding to µ close to

the expected number of points of a unit intensity PPP in BR:

Definition 2.3 (Density number). For a PPP X on Rd with corresponding counting

measure µ, the µ-density number of scale R, nR,µ, is given by:

nR,µ :=
µ(BR)

|BR|
=

|{X : X ∈ BR}|
|BR|

10
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In case another set ER of scale R is used instead of BR, we use the notation

nER, µ :=
µ(ER)

|ER|

We also introduce local distance of scale R, D(R), which quantifies how the close

counting measures of two PPPs are to each other and to the uniform measure at scale R.

This is achieved by comparing the PPPs’ counting measures µ and ν using Wasserstein

distances and their density numbers nR,µ and nR, ν :

Definition 2.4 (Local distance). For R > 0 and two point process X and Y on Rd with

counting measures µ and ν respectively, the local distance of scale R, D(R) is defined as

D(R) :=
1

Rd
W 2

2

∣∣
(−R,R)d

(µ, nR,µ) +
R2

nR,µ

(nR,µ − 1)2

+
1

Rd
W 2

2

∣∣
(−R,R)d

(ν, nR, ν) +
R2

nR, ν

(nR, ν − 1)2

where W2|(−R,R)d (µ, ν) is the 2-Wasserstein distance where the measures considered are

restricted to (−R, R)d:

W2|(−R,R)d (µ, ν) = W2

(
µ|(−R,R)d , ν|(−R,R)d

)
and where, if n ∈ R+, then W2|(−R,R)d (µ, n) := W2|(−R,R)d (µ, n dx), where dx is the

Lebesgue measure.

The introduction of this quantity is motivated by the linearisation of the Monge-

Ampère equation; in fact, D(R) being small is a vital part of making the heuristic as-

sumptions made in Equations (1.6) and (1.8) rigorous, where we imposed that both the

source and target measures be close to each other and to the uniform measure. It is

clear that the Wasserstein distance terms in D(R) quantify the closeness of the counting

measures to a multiple of the Lebesgue measure (namely, nR,µdx and nR, νdx), whilst the

square-distance terms impose that said multiples be close to 1; these conditions together

yield that µ and ν are close each other and are near-uniform in BR. Finally, note that

although we introduce this quantity for PPPs in Rd, the results we develop concerning

D(R) are in dimension d = 2; we introduce this quantity for general d as it has multiple

applications throughout the analysis of the Monge-Ampère equation and its linearisation.

We begin by showing the following bound on the expected local 2-Wasserstein distance:

Lemma 2.5 (ExpectedW2 bound, [1, Lemma 2.8.]). If µ is the counting density associated

to a PPP X in R2, then for R large enough the following bound holds:

E[W 2
2

∣∣
(0, R)2

(µ, n(0, R)2, µ)] ≲ R2 logR (2.2)

where A ≲ B ⇐⇒ ∃C depending solely on d such that A ≤ C · B and where we recall

that n(0, R)2, µ = µ((0, R)2)
|(0, R)2| = µ((0, R)2)

R2

11



Chapter 2. Local distances 2.1. Growth rate

Proof. Without loss of generality, we may assume R ∈ D throughout the rest of the proof,

where D is the set of all dyadic natural numbers, as for every R we can find R̄ ∈ D such

that R̄ ≥ R. Now consider all dyadic squares Q ⊂ (0, R)2 with dyadic integer side length,

and define the square’s number density nQ as:

nQ :=
µ(Q)

|Q|

x

Figure 2.1: Sequence of three dyadic squares homing onto point x.

For a fixed point x ∈ R2, consider the sequence of nested dyadic squares (Qi)
∞
i=1 that

contain x, i.e. x ∈ Q1 ⊂ Q2 ⊂ . . . Figure 2.1 displays the first three dyadic squares for a

fixed x ∈ R2. Then, the corresponding random sequence of density numbers (nQi
)∞i=1 is

a martingale, as it can be deduced from properties of PPPs that nQ|Q| follows a Poisson

distribution with mean |Q|. We now will stop this subdivision when nQ leaves the range

of “moderate” values
[
1
2
, 2
]
, as if R is large enough, then nR,µ concentrates around its

expected value of 1 due to the Chernhoff bound applied to Poisson random variables [15,

Proposition 11.15]. Then, for every x ∈ R2, we can define the stopping scale, r∗(x):

r∗(x) := 2 sup
r∈D

{
r is the side length of square Qi ∋ x s.t. nQ ̸∈

[
1

2
, 2

]}
Observe that for a square Q∗ of side length 1/2 we have that:

nQ∗ = 4µ(Q∗) ∈ 4N0 ̸∈
[
1

2
, 2

]
which implies r∗(x) ≥ 1. Now, we show that r6∗(x) is O(1) in expectation:

E[r6∗(x)] ≲ 1

Indeed, by the definition of r∗, we have:

P(r∗(x) > ρ) ≤
∑

Q∋x, rQ≥ρ

P
(
nQρ ̸∈

[
1

2
, 2

])

12



Chapter 2. Local distances 2.1. Growth rate

where rQ is the side length of the square Q, and Qr is a square with side length r. Applying

the Chernhoff bounds once more yields:

P(r∗(x) > ρ) ≲
∑

dyadic r≥ρ

exp(−Cr2) ≲ exp(−Cρ2)

We use the bound above to estimate E[r6∗(x)] using the layer-cake representation and a

change of variables:

E[r6∗(x)] = 6

∫ ∞

0

ρ5P(r∗(x) > ρ)dρ ≲
∫ ∞

0

ρ5 exp(−Cρ2)dρ ≲ 1 (2.3)

We now consider the following two disjoint cases; when r∗ ≤ R on all of (0, R)2 (which

we call event ER) and when ∃ y ∈ (0, R)2 s.t. r∗ > R (which will be denoted Ec
R).

In the latter, there must exist a cube Q′ ∋ y of length rQ′ ≥ R such that nQ′ ̸∈
[
1
2
, 2
]
,

and therefore r∗ > R on all of (0, R)2. Fix y ∈ (0, R)2. Notice that π = µ⊗ n(0, R)2dx is

a coupling of µ and n(0, R)2dx, and that if x, y ∈ (0, R)2, ∥x− y∥2 ≤ 2R2. Then:

W 2
2

∣∣
(0, R)2

(µ, n(0, R)2, µ) ≤
∫
(0,R)2×(0,R)2

∥x− y∥2[dµ(x)⊗ n(0, R)2, µdy]

≤ 2R2

∫
(0, R)2×(0, R)2

[dµ(x)⊗ n(0, R)2, µdy]

= 2R2R2µ((0, R))n(0, R)2, µ

= 2R6n2
(0, R)2, µ

which, combined with the fact that (0, R)2 ⊂ (0, r∗(y))
2, gives

W 2
2

∣∣
(0, R)2

(µ, n(0, R)2, µ) ≤ n2
(0, r2∗(y)), µ

r2∗(y)2R
4

Now, by definition of r∗(y),
1
2
≤ n(0, r∗(y))2, µ ≤ 2 and thus

W 2
2

∣∣
(0, R)2

(µ, n(0, R)2, µ) ≤ 4r2∗(y)2R
4 ≲ r6∗(y)

holds whenever r∗(y) > R. Using indicator functions, taking expectations and applying

(2.3) yields the estimate:

E[W 2
2

∣∣
(0, R)2

(µ, n(0, R)2, µ)χ(E
c
R)] ≲ 1 (2.4)

where χ(E) denotes the indicator function of the event E.

We now turn to the case when r∗ ≤ R on all of (0, R)2. We now define a partition Q
of (0, R)2; a dyadic square Q∗ ∈ Q if its number density nQ∗ is within the “moderate”

value range
[
1
2
, 2
]
, but the number density of at least one of its four children leaves this

range. Using the definition of r∗(x), this is equivalent to imposing the following condition:

rQ∗ = max{r∗(x) : x ∈ Q∗}

13



Chapter 2. Local distances 2.1. Growth rate

Once more, by definition, one of the children of Q∗ (which we denote Q∗, c) will be such

that nQ∗, c ̸∈
[
1
2
, 2
]
. Therefore, for x′ ∈ Q∗, c, r∗(x

′) = rQ∗ , and thus

−
∫
Q∗

r2∗(x)dx ≥ 1

r2Q∗

∫
Q∗, c

r2∗(x)dx =
1

4
r2Q∗ (2.5)

We now consider the transportation cost between nQ∗dx and µ. By construction, nQ∗

takes values near its mean; this implies that there exists a coupling π̃ between µ and

nQ∗dx such that no points are distributed between different squares in Q; i.e. all of the

mass is redistributed within the squares Q∗. In each square, the redistribution can have

at most length rQ∗

√
2, which gives

W 2
2

∣∣
(0, R)2×(0, R)2

(µ, nQ∗) ≤
∫
(0, R)2

∥x− y∥2dπ̃

=
∑
Q∗∈Q

∫
Q∗×Q∗

∥x− y∥2d( π̃|Q∗
)

≤
∑
Q∗∈Q

2r2Q∗nQ∗|Q∗|

=
∑
Q∗∈Q

2r4Q∗nQ∗

where π̃|Q∗ is the coupling π restricted to the square Q∗. We apply (2.5) to the inequality

above and the fact that nQ∗ ≤ 2 to obtain

W 2
2

∣∣
(0, R)2

(µ, nQ∗) ≤
∑
Q∗∈Q

16

∫
Q∗

r2∗(x)dx = 16

∫
(0, R)2

r2∗(x)dx

where we have used that the squares Q∗ form a partition of (0, R)2. Now, as r∗(x) ≥ 1,

r2∗(x) ≤ r6∗(x); using this and taking expectations yields:

E[W 2
2

∣∣
(0, R)2

(µ, nQ∗)] ≤ 16

∫
(0, R)2

E[r2∗(x)]dx ≤ 16

∫
(0, R)2

E[r6∗(x)]dx

Finally, using (2.3) and using indicator functions gives

E[W 2
2

∣∣
(0, R)2

(µ, nQ∗)χ(ER)] ≲ 1 (2.6)

Now, it only remains to show that, for any square Q∗ ∈ Q,

E[W 2
2

∣∣
(0, R)2

(nQ∗ , n(0, R)2, µ)χ(ER)] ≲ R2 logR (2.7)

This inequality, together with (2.4) and the triangle inequality for transportation dis-

tances, implies (2.2). We now introduce the Eulerian or fluid mechanics formulation of

the Wasserstein 2-distance as done in [16] and discussed further in [17]:

14



Chapter 2. Local distances 2.1. Growth rate

Theorem 2.6. For two measures p and q on Rn with finite second moments, the following

equality holds:

W2(p, q) = inf
(ρ, j)

∫ 1

0

∫
Rn

|j(x, t)|2ρ(x, t)dxdt

s.t.
∂ρ

∂t
+∇ · (ρj) = 0, ρ(x, 0) = p(x), ρ(x, 1) = q(x), weakly

(2.8)

It is clear that the theorem above also holds if we restrict p and q to some measurable

support X ⊂ Rd, which in our case is (0, R)2 ⊂ R2. Observe that an admissible ρ would

be a linear interpolation between the measures, i.e.

ρ(x, t) = tn(0, R)2, µ(x) + (1− t)nQ∗(x) (2.9)

By construction we have the bounds 1
2
≤ nQ∗ , n(0, R)2, µ ≤ 2, so 1

2
≤ ρ(x, t) ≤ 2. Thus, if

j(x, t) = j(x), the Eulerian formulation of the W2 implies the bound

W 2
2

∣∣
(0, R)2

(nQ∗ , n(0, R)2, µ) ≤ 2

∫
(0, R)2

|j(x)|2dx (2.10)

For all j which satisfy the continuity equation conditions in (2.8) which, due to our choice

of ρ, become all j such that

∇ · j = n(0, R)2, µ − nQ∗ on (0, R)2, ν · j = 0 on ∂(0, R)2 (2.11)

where ν is the outward normal of (0, R)2. We will now construct a j(x) satisfying (2.11),

from which the bound (2.7) will follow.

Consider a dyadic square and its four children Qc. On each of the four children, we

find a weak solution to the following Poisson equation with piecewise-constant right-hand

side and Neumann boundary conditions

−∆φQ = nQ − nQc on Qc, ν · ∇φQ = 0 on ∂Q

which, by the Fredholm alternative and the self-adjointness of the Laplacian [18], has a

solution, as ∫
Q

nQdx−
∫
Q

nQcdx = µ(Q)−
∑

Qc children of Q

µ(Qc) = 0

We define the flux j∗(x) as:

j∗(x) := −
∑

Q∩Q∗∋x, rQ∈[2rQ∗ , R]

∇φQ(x)

This choice of flux j∗(x) is motivated by the Neumann boundary conditions imposed

on ∂Q, which avoid singular contributions to the above sum across square boundaries.

Furthermore, we must restrict the side lengths of the squares we sum to be strictly larger

than rQ∗ , as we require the bound ρ(x, t) ≤ 2 to hold for the inequality (2.10) to be true,

15



Chapter 2. Local distances 2.1. Growth rate

and therefore all the squares we may consider must be coarser than rQ∗ . Indeed, it is also

straightforward to see that the boundary conditions of the original problem (2.10) hold,

showing that a j∗(x) is an admissible choice of flux.

We now show that (2.7) holds for j∗(x). Indeed, by the Poincaré inequality, we have:

1

r2Q

∫
Q

|∇φQ|2dx ≲
∫
Q

|∆φQ|2dx = |Q|
∑

Qc children of Q

(nQc − nQ)
2 (2.12)

As nQ is in the “moderate” range of values, we employ the crude estimate∑
Qc children of Q

(nQc − nQ)
2 ≲

∑
Qc children of Q

(nQc − 1)2

which is a useful bound, as we note that

E[(nQ − 1)2] =
1

|Q|2
E[µ(Q)2]− 2

|Q|
E[µ(Q)] + 1 ≲

1

|Q|

meaning that applying (2.12) yields

E
[∫

Q

|∇φQ|2dx
]
≲ |Q|2

∑
Qc children of Q

E[(nQc − 1)2] ≲ |Q| (2.13)

Now fix x and consider all the squares Q ∋ x. Obviously, ∇φQ(x) only depends on the

PPP through {nQc}. Furthermore, by the Poisson equation, E[∇φQ(x)] = 0. We now

claim that

Mr :=
∑

Q∋x, rQ∈[r,R]

∇φQ(x),

where r takes values in the set {R ·2−n | n ∈ N}, is a discrete martingale wrt the filtration

generated by {nQ}. Denoting by Fr the filtration generated by {nQ} where rQ = r, one

has

E[Mr/2|Fr] =
∑

Q∋x, rQ∈[r,R]

∇φQ(x) + E

 ∑
Q∋x, rQ∈[r/2, r]

∇φQ(x)

∣∣∣∣∣∣Fr


=Mr +

∑
Q∋x, rQ∈[r/2, r]

E[∇φQ(x)|Fr]

=Mr

where we have used that Mr is Fr-measurable, that the second term is independent of

Fr and that the term ∇φQ(x) has zero mean. Therefore, we can exploit the martingale

structure of Mr to find a bound for the flux j∗(x). Observe that as r∗ ≥ 1, we have that

E[|j∗(x)|2] ≤ E
[
sup
r≥1

|Mr|2
]

16



Chapter 2. Local distances 2.1. Growth rate

We may now apply the Burkholder-Davis-Gundy inequality [19, Section 11.5] to Mr to

obtain

E[|j∗(x)|2] ≲ E

 ∑
Q∋x, rQ∈[1, R]

|∇φQ(x)|2
 ≤ E

 ∑
Q: rQ∈[1, R]

|∇φQ(x)|2


which, after integrating over (0, R)2, becomes

E
[∫

(0, R)2
|j∗(x)|2dx

]
≲

∑
Q: rQ∈[1, R]

E
[∫

Q

|∇φQ(x)|2dx
]
,

using indicator functions and putting this together with (2.9) and (2.13) gives:

E[W 2
2

∣∣
(0, R)2

(nQ∗ , n(0, R)2, µ)χ(E
c
R)] ≲

∑
Q: rQ∈[1, R]

|Q| ≲ R2 logR (2.14)

Then, we have

E[W 2
2

∣∣
(0, R)2

(µ, n(0, R)2, µ)]

= E[W 2
2

∣∣
(0, R)2

(µ, n(0, R)2, µ)χ(ER)] + E[W 2
2

∣∣
(0, R)2

(µ, n(0, R)2, µ)χ(E
C
R )]

(2.4)+△−ineq

≲ 1 + E[W 2
2

∣∣
(0, R)2

(µ, nQ∗)χ(E
C
R )] + E[W 2

2

∣∣
(0, R)2

(nQ∗ , n(0, R)2, µ)χ(E
C
R )]

(2.6)+(2.14)

≲ 1 + 1 +R2 logR ≲ R2 logR

yielding (2.2), as required.

Remark 2.7. In the proof above, the only term that gives rise to the R2 logR upper

bound is (2.14), which quantifies the 2-Wasserstein distance at small scales, as the other

terms used in the triangle inequality bound contribute O(1).

We are now in a good position to derive a key estimate of D(R) in R2, which corre-

sponds to [1, Lemma 2.6]:

Lemma 2.8 (Growth of D(R) when d = 2). If X and Y are two PPPs on R2, then

∃C > 0 and an a.s. finite random radius r∗ such ∀R ≥ r∗, D(R) satisfies:

D(R) ≤ C logR (2.15)

Proof. We will show that

1

R2
W 2

2

∣∣
(−R,R)2

(µ, n(−R,R), µ) +
R2

n(−R,R), µ

(n(−R,R), µ − 1)2 ≲ logR (2.16)

First, we prove that ∃C > 0 and an a.s. finite r∗ such that ∀ dyadic R ≥ r∗

1

R2
W 2

2

∣∣
(−R,R)2

(µ, n(−R,R)2, µ) ≤ C logR (2.17)
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Chapter 2. Local distances 2.1. Growth rate

Pick R large enough such that Lemma 2.5 holds in the square (0, 2R)2; by stationarity

of the PPP X, we may translate this to the symmetric square (−R, R)2 to obtain

1

R2
E[W 2

2

∣∣
(−R,R)2

(µ, n(−R,R)2, µ)] ≲ logR

for R large enough. We now appeal to [20, Proposition 2.7], which by clever choice of M

can be interpreted as a concentration inequality for the Wasserstein distance:

Proposition 2.9 (Goldman, Huesmann, and Otto [20]). For a Poisson process µ on R2,

and ε > 0, ∃C > 0 independent of R and ε such that:

P
(

1

R2 logR

∣∣∣W 2
2

∣∣
(−R,R)2

(µ, n(−R,R)2, µ)− E[W 2
2

∣∣
(−R,R)2

(µ, n(−R,R)2, µ)]
∣∣∣ > ε

)
≲ e−Cε logR

The proposition above, together with the Borel-Cantelli lemma, gives (2.17), as it is

clear that the right-hand side of the concentration inequality is summable for dyadic R.

Finally, we now show that ∃C > 0 and an a.s. finite r∗ <∞ such that ∀ dyadic R ≥ r∗

R2

n(−R,R)2, µ

(n(−R,R)2, µ − 1)2 ≤ C logR (2.18)

As once more we may assume that R is large enough such that n(−R,R)2, µ ∈
[
1
2
, 2
]
, the

above is equivalent to showing:

R2(n(−R,R)2, µ − 1)2 ≲ logR

Observe that since n4R2 is a Poisson random variable with mean 4R2, by the Chernhoff

tail bounds:

P
(
R2(n(−R,R)2, µ − 1)2 > logR

)
= P

(∣∣n4R2 − 4R2
∣∣ > CR

√
logR

)
≲ e−C logR

Applying the Borel-Cantelli lemma once more gives that (2.18). Therefore, we have shown

that (2.16) holds for µ. Now, applying this inequality to both µ and ν with a.s. finite

radii rµ, ∗ and rν, ∗ respectively; taking r∗ = max(rµ, ∗, rν, ∗) gives (2.15), as claimed.

Now, returning to A1, we may use (2.15) to obtain a bound on (2.1); indeed, notice

that by (2.15), ∀ε > 0, ∃R > 0 such that

D(R) ≤ εR2

In addition, let R be large enough such that nR,µ, nR, ν ∈
[
1
2
, 2
]
. Then, unpacking the

definition of D(R) and keeping only the Euclidean-square distance terms gives:

R2

nR,µ

(nR,µ − 1)2 +
R2

nR,ν

(nR,ν − 1)2 ≤ D(R) (2.19)
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Recalling the definition of nR,µ and applying it to the first term in the right-hand side of

(2.19) gives the yields bound

πR4

µ(BR)

(
µ(BR)

2

π2R4
− 2

µ(BR)

πR2
+ 1

)
=
µ(BR)

π
− 2R2 +R2 1

nR,µ

≥ µ(BR)

π
− 3

2
R2

Applying the same procedure to nR, ν implies that ∃C > 0 such that

µ(BR) + ν(BR) ≤ CR2

Finally, notice that if we take T = T ◦ ∈ T ◦, then:

A1 ≤ |{X : X ∈ BR} ∪ {T ◦(X) : T ◦(X) ∈ BR}| = µ(BR) + ν(BR) ≤ CR2 (2.20)

Thus bounding A1.
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Chapter 3

Ergodicity & Stationarity

3.1 Birkhoff’s theorem

We now seek to control the quantity A2, which we achieve by using methods from ergodic

theory, namely Birkhoff’s ergodic theorem. First, we define the point count of the set

U × V :

Definition 3.1 (Point count of U × V ). Let X, Y be PPPs on Rd, which are matched

by T ∈ T . For U, V Lebesgue-measurable sets with at least one of U or V having finite

Lebesgue measure, we define the point count of U × V , NU, V , as:

NU, V := |{(X, T (X)) : X ∈ U, T (X) ∈ V }|

We now assume that T is stationary and ergodic, i.e. T = T ◦ ∈ T ◦. Furthermore,

to give meaningful results about the matching problem, we must assume that our sigma

algebra σ(S) is nontrivial in the sense that it allows basic quantities such as NU, V to be

measurable. Then, for any a ∈ Zd, due to stationarity of ⊕a we have

NU, V
Law
= Na+U, a+V

which, alongside the ergodicity of the action ⊕a, will allow us to employ Birkhoff’s ergodic

theorem:

Theorem 3.2 (Birkhoff’s ergodic theorem [14, Theorem 10.6]). If f ∈ L1(X, B, µ) and

if the measure µ is g-invariant where g is an action acting on X, and if g is ergodic, then:

lim
N→∞

1

N

N−1∑
n=0

f(gn · x) = E[f(x)] a.e.

We will apply Birkhoff’s ergodic theorem to obtain:

lim
R↑∞

1

Rd

∑
a∈Zd∩[0,Rd)

NU+a, V+a = E[NU, V ] a.s.

The above limit will allow us to estimate A2 as A2 = NA,B for a particular choice of A

and B.
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Chapter 3. Ergodicity & Stationarity 3.2. Long-distance bounds

3.2 Long-distance bounds

With this in mind, we first recall the definition of A2 below:

A2 := |{X : X or T ◦(X) ∈ BR and |T ◦(X)−X| > L}|

We will show the following lemma:

Lemma 3.3 (Ergodic estimate, [1, Lemma 2.1]). For any ε > 0, ∃L > 0 deterministic

and an a.s. finite random radius r∗ such that ∀R ≥ r∗, we have:

|{X ∈ (−R, R)d : |T ◦(X)−X| > L}| ≤ (εR)d (3.1)

This immediately shows that A2 ≤ o(Rd), as the hypercube (−R, R)d contains the

hypersphere of radius R. We present this result for general Rd to highlight its applicability

to higher dimensions, but we will only apply it in the setting where d = 2.

Proof. First, we rewrite the set in the left-hand side of (3.1) as NA,B; writing QR =

(−R, R)d gives and BL(QR) for the set of points a distance L from QR gives:

NQR,Rd\BL(QR) = {X ∈ (−R, R)d : |T ◦(X)−X| > L}

We begin by showing the following ergodic result:

lim
R↑∞

1

Rd
NQR,Rd\BL(QR) = E[NQ1,Rd\BL(Q1)] a.s. (3.2)

Then, we show that taking L→ ∞ gives

E[NQ1,Rd\BL(Q1)]
L→∞−−−→ 0 (3.3)

which and together imply the existence of an a.s. finite random radius r∗ and a determin-

istic L such that Lemma 3.3 holds. This can be achieved as follows: fix ε > 0 and first

pick L large enough such that

E[NQ1,Rd\BL(Q1)] ≤
εd

2
(3.4)

holds. Then, choose r∗ large enough such that∣∣∣∣ 1Rd
NQR,Rd\BL(QR) − E[NQ1,Rd\BL(Q1)]

∣∣∣∣ ≤ εd

2
(3.5)

is satisfied. Combining (3.4) and (3.5) gives that

NQR,Rd\BL(QR) ≤ (εR)d

which is precisely (3.1).
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We first show (3.2); observe that

NQR,Rd\BL(QR) =
∑
|i|<R

NQ1+i,Rd\BL(Q1+i)

=
∑
|i|<R

{X ∈ (i1 − 1, i1 + 1)× · · · × (id − 1, id + 1) : |T ◦(X)−X| > L}

As µ, the counting measure of the PPP X, and T ◦ are stationary and ergodic, then by

Birkhoff’s ergodic theorem we have that, for a sequence (Rn)
∞
n=1 ⊂ N such that Rn ↑ ∞

as n→ ∞ the following holds:

lim
n→∞

1

Rd
n

∑
|i|<Rn

NQ1+i,Rd\BL(Q1+i) = E[NQ1,Rd\BL(Q1)] a.s. (3.6)

For integer radii, note that the following equality holds:

1

Rd
n

∑
|i|<Rn

NQ1+i,Rd\BL(Q1+i) =
1

Rd
n

NQRn ,Rd\BL(QRn )

Therefore, (3.6) becomes (3.2) when R → ∞ along integer values. Furthermore, by the

squeeze theorem, the above also holds when R diverges along real values, so we may

assume without loss of generality that (Rn) ⊂ R, proving (3.2).

We now turn to show (3.3). We show that

NQ1,Rd\BL(Q1) → 0 a.s. (3.7)

Observe that ∀L > 0, NQ1,Rd\BL(Q1) ≤ NQ1,Rd . As Q1 has finite Lebesgue measure,

NQ1,Rd has finite expectation; therefore, if (3.7) holds, then we may apply the Lebesgue

dominated convergence theorem to arrive at (3.3). (3.7) holds asNQ1,Rd\BL(Q1) is a.s. finite,

and therefore there exists L large enough such that the equality NQ1,Rd\BL(Q1) = 0 holds

almost surely. This, together with the fact that E[NQ1,Rd\BL(Q1)] is finite by standard

theory of PPPs then implies that (3.3) holds.
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Chapter 4

Local energies

4.1 Energy bounds

We now turn to bounding the final term in (1.11), A3. The main goal of this chapter is

to prove the following lemma:

Lemma 4.1. Let X, Y be PPPs on R2 that are matched according to a locally optimal,

stationary and ergodic matching T ◦. Then, ∃β > 0 and an a.s. finite random radius r∗

such that ∀R ≥ r∗, the following holds:

A3 :=
1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|>L

|T ◦(X)−X|2 ≤ β logR

It is useful to introduce the local energy at scale R, E(R), as is done in [10], as this

quantity plays a central role in proving Lemma 4.1:

Definition 4.2 (Local energy). For a matching T between two point processes X and Y

on Rd and a given R > 0, the local energy of T at scale R, E(R), is defined as

E(R) :=
1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|2

Similarly toD(R), the introduction of E(R) can be motivated in terms of the heuristics

discussed in 1.2. Recall that the optimal map between T ∗(X) is always given by the

gradient of a convex function, so T ∗(X) = ∇φ(x) for some convex φ. Indeed, 1
R2E(R)

being small is the quantitative condition needed to justify the ansatz (1.7) so that T ∗(X) ≈
x + ε∇ψ(x), as outlined in [10]. Again, as with D(R), even though we introduce E(R)

for PPPs in Rd, all of the results concerning E(R) will be derived in R2.

Remark 4.3. It is useful to think of the harmonic function Φ(x) as being “equal” to

εψ(x) for ε≪ 1; this is not technically correct as εψ(x) comes from heuristic arguments,

but both functions play the same role in the linearisation of the Monge-Ampère equation.
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Chapter 4. Local energies 4.1. Energy bounds

We now introduce the harmonic approximation theorem [10, Theorem 1.4], which

quantitatively describes the quality of the approximation ∇Φ(x) ≈ T ∗(x)− x given that
1
R2E(R) and

1
R2D(R) are both small. Furthermore, we expect to be able to control |Φ(x)|

at a scale of order O(R); such control is also explicitly achieved by this theorem.

Theorem 4.4 (Harmonic approximation ). Let X and Y be PPPs on Rd and T ∗ be a

locally optimal matching between X and Y . Suppose that ∀τ > 0 s.t. τ ≪ 1, ∃ετ > 0

such that if the following holds

1

R2
E(4R) +

1

R2
D(4R) ≤ ετ (4.1)

then ∃Cτ > 0 and a harmonic function Φ(x) such that

1

Rd

∑
X∈BR or T ∗(X)∈BR

|T ∗(X)−X −∇Φ(X)|2 ≤ τE(4R) + CτD(4R)

sup
B2R

|∇Φ|2 ≤ Cτ (E(4R) +D(4R))
(4.2)

i.e. ∇Φ(X) is small in norm in B2R and locally approximates the displacement T ∗(X)−X

Note that the factor of 4 in E(4R) and D(4R) is not significant and is a mere techni-

cality; E(4R) and D(4R) still capture the behaviour of the matching and the PPPs at a

scale O(R). In fact, the original result [10, Theorem 1.4] uses a factor of 6 as opposed to 4,

which was recently improved in [21, Theorem 1.1]. Although this version of the theorem is

slightly different to its original formulations in [10] and [21], it readily follows from setting

the measures µ and ν as the counting measures of the PPPs X and Y , respectively. W

e now introduce a crucial proposition that, together with Theorem 4.4, will allow us

to prove Lemma 4.1:

Proposition 4.5 (Edges are of length < R). There is R large enough such that if T ◦(X) ∈
BR, then X ∈ B2R .

We will now first prove Lemma 4.1 and then show a result that both justifies that we

can indeed apply Theorem 4.4 (by showing (4.1) holds) and verifies Proposition 4.5.

Proof of Lemma 4.1. The goal behind introducing the harmonic approximation theorem

is as follows: suppose we may apply (4.2); we then have

A3 =
1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|>L

|T ◦(X)−X|2

≤ 2

R2

∑
X∈BR or T ◦(X)∈BR

|T ◦(X)−X −∇Φ(X)|2 + 2

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|>L

|∇Φ(X)|2

(4.2)

≤ 2τE(6R) + 2CτD(6R) +
2

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|>L

|∇Φ(X)|2

(4.3)
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Chapter 4. Local energies 4.1. Energy bounds

Then, as we have assumed that both (4.2) and Proposition 4.5 hold, we have∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|>L

|∇Φ(X)|2 ≤ A2 sup
X∈B2R

|∇Φ(X)|2

which we can control thanks to the second line of (4.2); using this estimate gives

A3 ≤ 2τE(4R) + 2CτD(4R) +
2

R2
A2(CτE(4R) +D(4R))

By Lemma 3.3, we may assume that R is large enough such that that the bound on A2,

(3.1), holds with τ instead of ε; note that by doing this, we have fixed a choice of L = Lτ .

Note that in this step the assumption that T ◦ is stationary and ergodic is crucial, as we

need these assumptions for Lemma 3.3 to hold. Therefore, we have

A3 ≤ 2τE(4R) + 2CτD(4R) + 2τCτ (E(4R) +D(4R))

Notice that as in the proof of Lemma 3.3 we first choose L so that (3.4) holds and

afterwards we pick R such that (3.5) holds, we may pick r∗ large enough such that (3.5)

still holds and such that, for all R ≥ r∗,

L2
τ ≤ logR (4.4)

holds. This, together with the fact that

E(R) =
1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|>Lτ

|T ◦(X)−X|2 + 1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|≤Lτ

|T ◦(X)−X|2

= A3 +
1

R2

∑
X∈BR or T ◦(X)∈BR

and |T ◦(X)−X|≤Lτ

|T ◦(X)−X|2

≤ A3 +
L2
τ

R2
A1

As we are in the case where d = 2, the estimate (2.20) holds. This, in conjunction with

(4.3) and (4.4) gives:

E(R) ≤ C logR + 2τE(4R) + 2CτD(4R) + 2τCτ (E(4R) +D(4R)) (4.5)

Once more, as d = 2, we may enlarge R the inequality (2.15) holds with constant M

instead of C, and such that:

D(4R) ≤ ε

2
R2 (4.6)

which holds as logR
R2 → 0 as R → ∞; this will be useful when showing (4.1) holds.

Therefore, rearranging (4.5) and applying (2.15) yields:

E(R) ≤ C logR + 2τ(1 + Cτ )E(4R) + 2Cτ (1 + τ)D(4R)

≤ 2τ(1 + Cτ )E(4R) + (2Cτ (1 + τ) +K) logR
(4.7)
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Chapter 4. Local energies 4.2. Edge control

Where C, M ≤ K and where we have implicitly used that R ≥ log 6, which we can assume

without loss of generality by possible enlargement of R. In the sequel, we now relabel τ

and Cτ such that (4.7) holds in the form:

E(R) ≤ τE(4R) + Cτ logR (4.8)

Observe that (4.8) is a recursive inequality for E(R), which we may exploit. Indeed, using

(4.8) multiple times with E(R), E(4R), E(42R), . . . yields:

E(R) ≤ τE(4R) + Cτ logR ≤ τ 2E(42R) + τCτ logR + Cτ logR

≤ τ kE(4kR) + Cτ logR
k−1∑
i=0

τ i
(4.9)

We now apply (4.1) to 1
R2E(4R) with R = 4k−1R′ to obtain

1

42k−2R′2E(4
2kR′) ≤ ε =⇒ E(6kR′) ≤ 16k

16
εR′2 ≤ 16kεR′2

which, after relabelling R′ and combined with (4.9) gives:

E(R) ≤ ε(16τ)kR2 + Cτ logR
k−1∑
i=0

τ i

Now, pick τ < 1
16

in Theorem (4.4) and send k → ∞ to obtain

E(R) ≤ Cτ logR
∞∑
i=0

τ i ≤ β logR

where β ≥ Cτ

∑∞
i=0 τ

i, thus giving a bound on E(R). As E(R) dominates A3, also shows

that A3 ≤ β logR.

4.2 Edge control

Now, we must check the validity of Proposition 4.5 and that we may indeed apply Theorem

4.4 by showing (4.1) holds. These two claims follow from the lemma below, which shows

that if X ∈ (−R, R)2, then the matchings cannot be too long:

Lemma 4.6 (Edge control, [1, Lemma 2.2]). ∀ε > 0, ∃ an a.s. finite random radius r∗

such that ∀R ≥ r∗, if X ∈ (−R, R)2, then

|T ◦(X)−X| ≤ εR

Indeed, if we show Lemma 4.6, then we may apply it with 4R instead of R to obtain

1

R2

∑
X∈B4R

|T ◦(X)−X|2 ≤ |X ∈ B4R|
R2

ε2R2 ≲ nR,µε
2R2
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Chapter 4. Local energies 4.2. Edge control

where we have used the definition of nR,µ. As we may assume without loss of generality

that R is large enough such that nR,µ ∈
[
1
2
, 2
]
, relabelling ε gives:

1

R2

∑
X∈B4R

|T ◦(X)−X|2 ≤ ε

4
R2 (4.10)

Now, by symmetry, we may also assume (possibly enlarging R once more) that Lemma

4.6 holds with T ◦(X) replaced with X and with ε < 1. This yields:

1

R2

∑
T ◦(X)∈B6R

|T ◦(X)−X|2 ≤ ε

4
R2

which, combined with (4.10), gives:

E(4R) =
1

R2

∑
X∈B4R

|T ◦(X)−X|2 ≤ ε

4
R2 +

1

R2

∑
T ◦(X)∈B4R

|T ◦(X)−X|2 ≤ ε

2
R2

This inequality, together with (4.6), shows that (4.1) holds for d = 2, justifying our

application of Theorem 4.2 in the proof of Lemma 4.1.

Furthermore, by choice of R and because T ◦(X) ∈ BR ⊂ (−R, R)2, then:

|X| ≤ |T ◦(X)−X|+ |T ◦(X)| ≤ (ε+ 1)R < 2R =⇒ X ∈ B2R

proving Proposition 4.5.

We have seen that verifying Lemma 4.6 is sufficient to validate our proof of Lemma

4.1; hence, we devote the remainder of this chapter to showing Lemma 4.6.

Proof of Lemma 4.6. Fix a small ε > 0, i.e. 0 < ε≪ 1. We begin by assuming r∗ is large

enough such that ∀R ≥ r∗:

1. Lemma 3.3 holds for ε with (−2R, 2R)2 instead of BR,

2. (2.16) holds with 2R instead of R,

3. L ≤ εr∗

where we will use the first two conditions in the following form

|{X ∈ (−2R, 2R)2 and |T ◦(X)−X| > L}| ≤ (ε4R)2

W 2
2

∣∣
(−2R, 2R)2

(µ, n(−2R, 2R), µ) +
(4R)4

n(−2R, 2R), µ

(n(−2R, 2R), µ − 1)2 ≤ (ε4R)4
(4.11)

Observe that the second line of (4.11) immediately implies that n(−2R, 2R), µ ∈
[
1
2
, 2
]
.

Furthermore, note we are once more using stationarity and ergodicity assumptions on T ◦

when bounding A3, as Lemma 3.3 requires these assumptions to hold.
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Chapter 4. Local energies 4.2. Edge control

Hereon, we fix a realisation and an R ≥ r∗. We now show that for a square Q of

mesoscopic side length r, that is, r satisfies

εR ≪ r < 2R, (4.12)

one has:

r2 ≲ |{X ∈ Q}| (4.13)

Let η be a Lipschitz function with Lipschitz constant Mη ≲ 1
r
that is also compactly

supported in Q and such that 0 ≤ η ≤ 1 and η ≥ 1
2
on Qr/2, the square of side length

r/2; in particular, these conditions translate to the following inequalities:∫
Q

ηdx ≥
∫
Qr/2

ηdx ≥ 1

4
r2∫

Q

ηdµ ≤
∫
dµ = |{X ∈ Q}|

(4.14)

Now let π be a coupling between µ and n(−2R, 2R), µdx; then∣∣∣∣∫
Q

ηdµ−
∫
Q

ηn(−2R, 2R), µdx

∣∣∣∣ = ∣∣∣∣∫
Q

η(x)− η(y)dπ(x, y)

∣∣∣∣
≤
∫
Q

|η(x)− η(y)|dπ(x, y)

≤Mη

∫
Q

|x− y|dπ(x, y)

≤Mη

(∫
Q

|x− y|2dπ(x, y)
)1/2(∫

Q

1dπ(x, y)

)1/2

≤Mη W2|(−2R, 2R)2 (µ, n(−2R, 2R), µ)

(∫
Q

dµ+ n(−2R, 2R), µ|Q|
)1/2

(4.15)

where we have used the triangle inequality, the Lipschitz property, Minkowski’s inequality

and the definitions of the 2-Wasserstein distance and the coupling π, in that order. We

may develop (4.15) further to recover a W 2
2 term, as

Mη W2|(−2R, 2R)2 (µ, n(−2R, 2R), µ)

(∫
Q

dµ+ n(−2R, 2R), µ|Q|
)1/2

≤M2
η W

2
2

∣∣
(−2R, 2R)2

(µ, n(−2R, 2R), µ) + |{X ∈ Q}|+ n(−2R, 2R), µ|Q|

which when combined with (4.14) and (4.15) gives

r2

4
≤M2

η W
2
2

∣∣
(−2R, 2R)2

(µ, n(−2R, 2R), µ) + 2|{X ∈ Q}|+ n(−2R, 2R), µr
2

an inequality that, together with the fact that R is large enough such that (4.11) holds

and due to our choice of η, gives

r2

4
≲

(4εR)4

r2
+ 2|{X ∈ Q}|+ 2
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which, when combined with (4.12) gives (4.13).

It should be noted that (4.13) implies that for all squares Q of side length r satisfying

(4.12), one has

∃X ∈ Q s.t. |T ◦(X)−X| ≤ L (4.16)

This result follows by contradiction: suppose (4.16) does not hold for some square Q

of side length satisfying (4.12). Then, all of the Poisson points in Q are transported a

distance greater than L; i.e.

|{X ∈ Q}| = |{X ∈ Q s.t. |T ◦(X)−X| > L}|

As (4.13) holds for such a square Q and r is such that (4.12) then, for such a Q

(4εR)2 < |{X ∈ Q s.t. |T ◦(X)−X| > L}|
(4.12)

≤ |{X ∈ (−2R, 2R)2 s.t. |T ◦(X)−X| > L}|
(4.11)

≤ (4εR)2

giving a contradiction, so (4.16) holds.

Now, we will bolster (4.16) by showing that, given X ∈ (−R, R)d, there are at least

three Poisson points transported less than distance L that are evenly spread out around

X and whose distance from X is O(r), where r is as in (4.12). Indeed, we will show the

existence of three Poisson points X1, X2 and X3 and a small ρ≪ 1 such that ∀n = 1, 2, 3

|T ◦(Xn)−Xn| ≤ L (4.17)

|Xn −X| ∼ r (4.18)

Bρ ⊂ Hull

({
Xn −X

|Xn −X|

}3

n=1

)
(4.19)

The proof of this statement is highly geometric; we begin by considering the symmetric

trisection1 of the plane at X. Now rotate the trisection by a small angle α, namely α ≪ π
3
;

we will call the small cones formed by the area between these two planar trisections σi.

Furthermore, let ζi := σi ∩ (B2r(X) \Br(X)), so that ζi is the intersection of σi with the

annulus of radii r and 2r centred at X; this construction is shown in Figure 4.1. As α is

small enough, i.e. if α ≪ 1, then if we select three unit vectors e1, e2 and e3 such that

ei ∈ σi, then ∃ρ ≪ 1 such that Bρ(X) ⊂ Hull({e1, e2, e3}); such a Bρ(X) is displayed

in Figure 4.2. Notice that ρ is bounded away from zero and independent from r. Now

observe ζi contains a square of side length O(r), and clearly ζi ⊂ (−2R, 2R)2. Therefore,

we may apply (4.16) to each of the ζi to conclude that ∃Xi ∈ ζi, where Xi is a Poisson

point, showing (4.17). Furthermore, as ζi ⊂ (B2r(X) \ Br(X)), (4.18) holds. Finally,

picking the unit vectors ei =
Xi−X
|Xi−X| verifies (4.19).

1By the symmetric trisection at a point ω ∈ R2 we mean three straight lines emerging from ω, each
at an angle π/3 from each other.
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r r

σ3

σ2

σ1

α

X

Region ζ1

Region ζ2

Region ζ3

Figure 4.1: Diagram showing the symmetric trisection of the plane at X, rotated by angle
α, illustrating the regions σi with their respective annular intersections.

With this in hand, we can now finish the proof and show Lemma 4.6. Let X ∈
(−R, R)2 be a Poisson point, and find the three Poisson points X1, X2 and X3 around it

such that (4.17), (4.18) and (4.19) hold. As T is cyclically monotone, it is monotone; to

see this, simply pick N = 2 in Definition 1.5 to obtain, for general T ∈ T :

T (X1)
⊤(X1 −X2) + T (X2)

⊤(X2 −X1) ≥ 0 =⇒ (T (X1)− T (X2))
⊤(X2 −X1) ≥ 0

We will use monotonicity as follows:

(T ◦(X)−X)⊤(Xn −X) = ([T ◦(Xn)−Xn] + [T ◦(X)− T ◦(Xn)] + [Xn −X])⊤(Xn −X)

≤ (T ◦(Xn)−Xn)
⊤(Xn −X) + |Xn −X|2

≲ |T ◦(Xn)−Xn|2 + |Xn −X|2
(4.20)

where we have used Young’s inequality in the last inequality. Now, as (4.17) holds and

L ≤ εR, we use (4.12) to obtain

|T (Xn)−Xn| ≤ r

which combined with (4.18) and (4.20) gives:

(T ◦(X)−X)⊤
Xn −X

|Xn −X|
≲ |Xn −X|+ |T ◦(Xn)−Xn|2

|Xn −X|
≲ r

Finally, observe that as (4.19) holds, and as for any v ∈ Bρ(0), v = 1
ρ
e for e ∈ B1(0),

then:

e =
3∑

i=1

λn
Xn −X

|Xn −X|
,

3∑
i

λi =
1

ρ
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e1

e2

e3

ρ
X

X1

X2

X3

Figure 4.2: Illustration of convex hull and inscribed ball within the regions σi. The shaded
area depicts the convex hull formed by the unit vectors e1, e2, and e3. The grid-patterned
circle highlights the ball with radius ρ and centred at X that can be inscribed within the
hull of the unit vectors. The three Poisson points Xi ∈ ζi near X are also displayed.

and therefore, for all unit vectors e, we have:

(T ◦(X)−X)⊤e =
3∑

i=1

λn(T
◦(X)−X)⊤

Xn −X

|Xn −X|
≲
r

ρ

Now, as ρ is both bounded away from zero and independent from r, we may conclude

that for all unit vectors e:

(T ◦(X)−X)⊤e ≲ r

which, together with the choice e = T ◦(X)−X
|T ◦(X)−X| , yields

|T ◦(X)−X| ≲ r

As this holds for all r such that (4.12) applies, we finally deduce that for all Poisson points

X ∈ (−R, R),
|T ◦(X)−X| ≤ εR

proving Lemma 4.6.

Therefore, our proof of Lemma 4.1 is now complete, successfully bounding A3.
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Chapter 5

Closing remarks & Further work

5.1 Remarks

5.1.1 Final estimate

We are now prepared to show the upper bound (1.10). First, fix ε > 0 and let r∗, 1 be

the random radius such that Corollary 2.2 holds. Furthermore, let r∗, 2 and r∗, 2 be the

random radii such that Lemma 3.3 and Lemma 4.1 hold. Finally, there also exists an

a.s. finite random radius r∗, 4 such that ∀R ≥ r∗, 4, Lε ≤
√
ε logR. Then, for all R such

that R ≥ max(r∗, 1, r∗, 2, r∗, 3, r∗, 4), applying all of the aforementioned bounds to (1.12)

yields

1

R2

∑
X or T ◦(X)∈BR

|T ◦(X)−X| ≤ CL+
√
εβ logR ≤ 2C

√
β
√
ε
√

logR

Taking ε′ such that 2C
√
β
√
ε = ε′ yields:

1

R2

∑
X or T ◦(X)∈BR

|T ◦(X)−X| ≤ CL+
√
εβ logR ≤ ε′

√
logR

proving that indeed

1

R2

∑
X or T ◦(X)∈BR

|T ◦(X)−X| ≤ o(
√

logR)

which, together with the lower bound (1.9) shows the nonexistence of T ◦ in R2.

5.1.2 Lower bound

Notice that to show the non-existence of T ◦, it is crucial for the lower bound (1.9) to

hold. Indeed, the lower bound is, essentially, the lower bound presented [13], adapted to

the square (0, R)2. The adapted bound is presented in [1] as
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Lemma 5.1 (Lower bound [1, Lemma 2.5]). Let X and Y be two PPPs on R2 with unit

intensity. Then, ∃C > 0 and an a.s. finite random radius r∗ <∞ s.t. ∀R ≥ r∗

SR(X, Y ) := sup
ζ∈C∞:
|∇ζ|≤1,∫
ζ dx=0,

supp(ζ)⊂(0,R)2

 1

R2

∑
X,Y ∈(0, R)2

|ζ(X)− ζ(Y )|

 ≥ C
√

logR

This lemma immediately implies the lower bound (1.9). We will not directly address

the proof of this lemma here, as the novelty of [1] is the application of optimal transport

methods and Monge-Ampère linearisation techniques to the Poisson matching problem.

Still, we note that it is very similar to the proof of Lemma 2.5. Indeed, the lower bound is

firstly shown in expectation by using dyadic square partitions of (0, R)2, and then lifted

to an a.s. bound via the following proposition [1]:

Proposition 5.2. Let SR(X, Y ) be as above. Then

lim
R↑∞, R∈D

1

R2
√
logR

|SR(X, Y )− E[SR(X, Y )]| = 0 a.s.

The proposition above can easily be shown via a Borel-Cantelli argument, as SR sat-

isfies the following concentration inequalities [1]:

Proposition 5.3. Let SR(X, Y ) be as above, and EX and EY be the expectations with

respect to to the PPPs X and Y , accordingly. Then the following concentration inequalities

hold:

P
(

1

R2
√
logR

|SR(X, Y )− E[SR(X, Y )]| > ε

)
≲ e−

ε2

4
logR

P
(

1

R2
√
logR

|EX [SR(X, Y )]− E[SR(X, Y )]| > ε

)
≲ e−

ε2

4
logR

Where EX is the expectation with respect to the PPP X only.

For more details on the lower bound, we encourage the reader to consult [13] and [1,

Lemma 2.5].

5.1.3 Generalisations

Hereon, let T ◦
γ be a stationary, ergodic and locally optimal matching in Rd with respect

to the γ-power of the norm, i.e. for any T̃γ differing from T ◦
γ on finitely many points, we

have: ∑
X

|T ◦
γ (X)−X|γ −

∑
X

|T̃γ(X)−X|γ ≤ 0

Recently, it was shown in [2] that the same techniques applied to show the upper bound

(1.10) can be applied to show the non-existence of T ◦
γ when γ > 1, as all of the arguments

presented above generalise to arbitrary powers, including a bound on the local toric γ-

Wasserstein distance of the form:
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Lemma 5.4 (Locally toric γ-Wasserstein growth [2, Lemma 2.1]). Let W̃ |[0, R)d; γ (µ, n[0,R)d), µ)

be the γ-Wasserstein distance restricted to the d-dimensional torus [0, R)d. Then

W̃ |[0, R)d; γ (µ, n[0,R)d), µ) ≤ CRd

{
(logR)γ/2 if d = 2

1 otherwise

This proposition, together with the following bound:

Proposition 5.5. Let γ > 1 and nR,µ be defined as before. Then:

Rγ

nR,µ

|nR,µ − 1|γ ≤ C

{
(logR)γ/2 if d = 2

1 otherwise

Gives the full generalised version of Lemma 2.8:

Theorem 5.6 (Local γ-distance growth [2, Theorem 1.7]). Let X and Y be two PPPs on

Rd with counting measures µ and ν, and, for γ > 1, define the local γ-distance of scale

R, Dγ(R) as:

Dγ(R) :=
1

Rd
W γ

γ

∣∣
BR

(µ, nR,µ)+
Rγ

nR,µ

(nR,µ−1)2+
1

Rd
W γ

γ

∣∣
BR

(ν, nR, ν)+
Rγ

nR, ν

(nR, ν−1)2

Then

Dγ(R) ≤ CRd

{
(logR)γ/2 if d = 2

1 otherwise

A crucial step in generalising the methods outlined in our proof of the upper bound

is an extension to the harmonic approximation theorem to γ-Wasserstein distances as

presented in [21]; first, we introduce the local γ-energy, Eγ(R), which plays a role akin to

E(R) in [2]:

Definition 5.7 (Local γ-energy). For a matching T between two point processes X and

Y on Rd, a γ > 1 and a given R ∈ R, the local γenergy of scale R of T , Eγ(R), is defined

as

Eγ(R) :=
1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|γ

With this in hand, we introduce the γ-harmonic approximation theorem:

Theorem 5.8 (γ-Harmonic approximation). Let X and Y be PPPs on Rd and T ∗ be a

locally optimal matching between X and Y . Suppose that ∀τ > 0 s.t. τ ≪ 1, ∃ετ > 0

such that if the following holds

1

Rγ
Eγ(4R) +

1

Rγ
Dγ(4R) ≤ ε
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then ∃Cτ > 0 and a γ-harmonic function1 Φ(x) such that

1

Rd

∑
X∈BR or T ◦(X)∈BR

∣∣∣T ∗(X)−X − |∇Φ(X)|γ′−2∇Φ(X)
∣∣∣γ ≤ τEγ(4R) + CτDγ(4R)

sup
B2R

|∇Φ|γ′ ≤ Cτ (Eγ(4R) +Dγ(4R))

where γ′ is the conjugate exponent of γ.

This theorem, alongside the estimates on the number of long and short edges presented

in Corollary 2.2 & Lemma 3.3 give an upper bound of o((logR)γ/2) when d = 2. In

particular, it is worth noting that the techniques used to arrive at Corollary 2.2 are

fundamentally different, as T ◦
γ no longer has cyclically monotone support for general

γ > 1, so one cannot rely on the monotonicity properties of T ◦
2 employed in our proof.

Finally, the bound is arrived at by using Hölder’s inequality for ℓp spaces in a similar

fashion as in (1.12) and bounding A1, A2 and a quantity analogous to A3, but with an

exponent of γ instead of 2.

5.2 Further work

The non-existence of a quadratic and, more generally, γ-locally optimal (for γ > 1)

stationary and ergodic matching between two PPPs in R2 presents a plethora of new

avenues for exploration.

X Y

Z

Figure 5.1: Directed graph showing the permissible matching directions between the PPPs
X, Y and Z.

A natural extension of the non-existence of T ◦ for two PPPs is to consider the same

setting with three or more PPPs, which we call the multiple PPP matching problem; for

example, let X, Y and Z be three homogeneous PPPs of unit intensity on R2 such that

any point in X may be matched onto any point in Y or Z, and similarly for the remaining

PPPs. One could then ask if a locally optimal stationary and ergodic matching exists

between the points in X, Y and Z.

This question becomes trivial if we restrict the matching of the PPPs in a directed

way; these restrictions can be represented as a directed graph with 3 nodes as done in

Figure 5.1. In the particular setting of Figure 5.1, note that by the non-existence of T ◦,

1A function u is γ-harmonic if it solves ∆γu = div(|∇u|γ−2∇u) = 0
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a stationary, ergodic and locally-optimal matching between X, Y and Z cannot exist,

as by removing one of the PPPs from the diagram shows that the problem essentially

decomposes into three instances of the Poisson matching problem with two PPPs. Never-

theless, if one makes the graph in Figure 5.1 undirected, the question becomes non-trivial

because removing one of the PPPs does not necessarily yield two independent PPPs, as

this removal may result in isolated points within the remaining point sets.

Another variant of the multiple PPP matching problem is to consider 3 PPPs X, Y

and Z as before, but with different intensities. In this scenario, one can ask if there

exists a stationary, ergodic and locally optimal matching between the three PPPs. Both

of these topics, along with related questions of interest, are comprehensively examined in

[22]. However, the local optimality of these matchings remains unaddressed, and optimal

transport techniques have not been applied to these issues, highlighting the potential for

further research in this area.

Furthermore, one can easily generalise the problem of matching multiple PPPs using

a stationary, ergodic and locally optimal matching to higher-order types of matchings,

not only to pairwise point matchings; in these higher-order matchings, one must define

a notion of “cost of a matching”, such as the sum of the distance between all of the

points being matched, or the volume of the simplex of the region between the edges of the

points being matched. Again, [22] explores higher-order matchings, but it refrains from

assigning a cost to these matchings as their focus lies outside the realm of optimality.

Just as the Poisson matching problem with two PPPs has multiple connections to the

theory of bipartite graphs, extending the problem to more than PPPs and higher-order

matchings gives clear connections to the n-colorability of hypergraphs.

The principal obstacle in applying the linearisation of the Monge-Ampère & optimal

transport techniques presented throughout this dissertation to more than two PPPs and

higher-order matchings is the relative youth of multi-marginal optimal transport [23],

which generalises optimal transport theory to more than two marginal distributions. As

in regular optimal transport, multi-marginal optimal transport typically refers to one

of two problems, the multi-marginal Kantorovich problem or the multi-marginal Monge

problem, the former being a relaxation of the latter. For our purposes, we are interested

in solving the multi-marginal Monge problem, defined below:

Definition 5.9 (Multi-marginal Monge problem). Let λ1, . . . , λn probability measures

on X1, . . . , Xn and c(x1, . . . , xn) : X1 × · · · × Xn → R be a continuous cost function.

Define M(λ1, . . . , λn) to be the set of all (n − 1) tuple of maps (F2, . . . , Fn) such that

Fi#λ1 = λi. Then, an (n − 1)-tuple of maps (F ∗
2 , . . . , F

∗
n) solves the multi-marginal

Monge problem with cost c if it satisfies:

(F ∗
2 , . . . , F

∗
n) = inf

(F2, ..., Fn)∈M(λ1, ..., λn)

∫
X1×···×Xn

c(x1, F2(x2), . . . , Fn(xn))dλ1dλ2 . . . dλn
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A solution to the multi-marginal Monge optimal problem (F ∗
2 , . . . , F

∗
n) is called a Monge

tuple.

In our setting, given X1, . . . , Xn PPPs of unit intensity, observe that each F ∗
i in the

Monge tuple is precisely the optimal map between the PPPs X1 and Xi.

Nevertheless, to date, multi-marginal optimal transport lacks the same connections

to the Monge-Ampère equation that regular optimal transport enjoys, which greatly ob-

fuscates the intuition present in the original problem. In addition, no metric properties

arising from multi-marginal optimal transport have proven useful in the Poisson opti-

mal matching context. Moreover, a comprehensive analytic characterization of the con-

stituents of the Monge tuple remains elusive, and while conditions for the existence of such

a Monge tuple have been investigated [24], they are not yet exhaustive like in the regular

optimal transport literature. Nevertheless, the conditions necessary for the existence of

a Monge tuple have recently been established for cases where the involved measures are

m-empirical (measures that are compactly supported on m points) [25], a result which

is the first of its kind and could serve as a gateway to integrating multi-marginal OT

techniques into the PPP matching literature.

37



Bibliography

[1] M. Huesmann, F. Mattesini, and F. Otto. “There is no stationary cyclically mono-
tone Poisson matching in 2d”. In: Probability Theory and Related Fields 187.3-4
(Dec. 2023), pp. 629–656.

[2] M. Huesmann, F. Mattesini, and F. Otto. “There is no stationary p-cyclically mono-
tone Poisson matching in 2D”. In: arXiv: Probability (Nov. 2023).
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